Manipulation of ionized impurity scattering for achieving high thermoelectric performance in n-type Mg3Sb2-based materials.

نویسندگان

  • Jun Mao
  • Jing Shuai
  • Shaowei Song
  • Yixuan Wu
  • Rebecca Dally
  • Jiawei Zhou
  • Zihang Liu
  • Jifeng Sun
  • Qinyong Zhang
  • Clarina Dela Cruz
  • Stephen Wilson
  • Yanzhong Pei
  • David J Singh
  • Gang Chen
  • Ching-Wu Chu
  • Zhifeng Ren
چکیده

Achieving higher carrier mobility plays a pivotal role for obtaining potentially high thermoelectric performance. In principle, the carrier mobility is governed by the band structure as well as by the carrier scattering mechanism. Here, we demonstrate that by manipulating the carrier scattering mechanism in n-type Mg3Sb2-based materials, a substantial improvement in carrier mobility, and hence the power factor, can be achieved. In this work, Fe, Co, Hf, and Ta are doped on the Mg site of Mg3.2Sb1.5Bi0.49Te0.01, where the ionized impurity scattering crosses over to mixed ionized impurity and acoustic phonon scattering. A significant improvement in Hall mobility from ∼16 to ∼81 cm2⋅V-1⋅s-1 is obtained, thus leading to a notably enhanced power factor of ∼13 μW⋅cm-1⋅K-2 from ∼5 μW⋅cm-1⋅K-2 A simultaneous reduction in thermal conductivity is also achieved. Collectively, a figure of merit (ZT) of ∼1.7 is obtained at 773 K in Mg3.1Co0.1Sb1.5Bi0.49Te0.01 The concept of manipulating the carrier scattering mechanism to improve the mobility should also be applicable to other material systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermoelectric effects in wurtzite GaN and AlxGa1−xN alloys

We have investigated theoretically the thermoelectric effects in wurtzite GaN crystals and AlxGa1−xN alloys. The electron-transport model includes all dominant energy-dependent electron-scattering mechanisms, such as charged dislocation and ionized impurity scattering, polar optical phonon, deformation potential, and piezoelectric acoustic-phonon scattering. The results of the calculation show ...

متن کامل

Discovery of high-performance low-cost n-type Mg3Sb2-based thermoelectric materials with multi-valley conduction bands

Widespread application of thermoelectric devices for waste heat recovery requires low-cost high-performance materials. The currently available n-type thermoelectric materials are limited either by their low efficiencies or by being based on expensive, scarce or toxic elements. Here we report a low-cost n-type material, Te-doped Mg3Sb1.5Bi0.5, that exhibits a very high figure of merit zT ranging...

متن کامل

Model of transport properties of thermoelectric nanocomposite materials

We present a model describing the carrier conductivity and Seebeck coefficient of thermoelectric nanocomposite materials consisting of granular regions. The model is successfully applied to explain relevant experimental data for PbTe nanocomposites. A key factor is the grain potential boundary scattering mechanism. Other mechanisms, such as carrier-acoustic phonon, carrier-nonpolar optical phon...

متن کامل

Intrinsically High Thermoelectric Performance in AgInSe2 n‐Type Diamond‐Like Compounds

Diamond-like compounds are a promising class of thermoelectric materials, very suitable for real applications. However, almost all high-performance diamond-like thermoelectric materials are p-type semiconductors. The lack of high-performance n-type diamond-like thermoelectric materials greatly restricts the fabrication of diamond-like material-based modules and their real applications. In this ...

متن کامل

Thermoelectric Transport in Nanocomposites

Thermoelectric materials which can convert energies directly between heat and electricity are used for solid state cooling and power generation. There is a big challenge to improve the efficiency of energy conversion which can be characterized by the figure of merit (ZT). In the past two decades, the introduction of nanostructures into bulk materials was believed to possibly enhance ZT. Nanocom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 114 40  شماره 

صفحات  -

تاریخ انتشار 2017